Conjugate Gradient Method

The Conjugate Gradient method is an effective method for symmetric positive definite systems. The method proceeds by generating vector sequences of iterates, residuals corresponding to the iterates, and search directions used in updating the iterates and residuals.

The unpreconditioned conjugate gradient method constructs the 
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 is minimized, where 
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 is the exact solution of Ax=b. This minimum is guaranteed to exist in general only if A is symmetric positive definite. The conjugate gradient iterates converge to the solution of Ax=b in no more than n steps, where n is the size of the matrix.

In every iteration of the method, two inner products are performed in order to compute update scalars that are defined to make the sequences satisfy certain orthogonal conditions. On a symmetric positive definite linear system these conditions imply that the distance to the true solution is minimized in some norm.







The iterates
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 are updated in each iteration by a multiple
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Correspondingly the residuals 
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The choice 
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The search directions are updated using the residuals
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The following is parallel code fragment which performs the conjugate gradient algorithm for solving Ax=b.

r_local = b_local

rho = Allreduce (r_local’* r_local)

for k=1:itermax

if k=1



p_local=r_local


else 



beta=rho/oldrho



p_local = r_local + beta* p_local


end


p=Gather(p_local)


v_local=A_local*p


alpha = rho/ Allreduce(p_local’*v_local)


x_local = x_local + alpha*p_local


r_local = r_local – alpha*v_local


oldrho = rho


rho = Allreduce (r_local’*r_local)

end

The algorithm is the same as that in serial computer. All matrices and vectors, however, have distributed: various dot products are performed by collecting partial results (using Gather) and Sum them up (using Allreduce(SUM)).

Example 7

Assume A be a 57600x57600 sparse matrix,
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CG method convergent in 8 iterations.

Result:

	No of processor used
	1
	2
	4

	Time used
	0.95
	1.13
	1.12


(1) In Network of work-stations, since the time used in both algorithm are almost the same. The difference between them is when one processor is used, the time recorded is just used in calculation. When four processors are used, the time mainly used in message passing.

(2) In cluster, if we don’t including the time used in showing x, the time used in both algorithms are almost the same.

	No of processor
	1
	2
	4

	Total time - Time showing x
	1.17-0.65  = 0.52
	4.52 - 3.86 = 0.66
	3.48 - 2.68 = 0.8


The time used in message passing becomes longer if more processors are used.    Ex. When 2 and 4 processors are used, it used 0.17s and 0.37s to transfer message respectively.

Since this matrix is too fast to convergent, there is just 8 iteration steps and the time used in calculation is not obvious in this program.

Example 8

In this example, I will let smaller number in diagonal, so it need more iterates to convergent.

Assume A be a 57600x57600 sparse matrix,
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Since A is still a symmetric and positive definite matrix, we can solve the equations by conjugate gradient method.

The solution convergent in 296 iterations.

Result:

	No of processor used
	1
	2
	4
	8

	Time used
	6.4
	6.73
	5.8
	5.41


(1) In network, from the profile report, the time used in calculation is shorted. But when 2 processors are used, we need to add up the time used in calculation and message passing. We find that the total time used is almost the same as that when one processor is used.

When 4 and 8 processors are used, the speedup of parallel algorithm is 
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The efficiency is
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(2) In cluster, comparing with example 7, we find that if it needs more iteration to convergent, the time used in message passing increased.

	No of processor
	1
	2
	4
	8

	Time used in calculation
	6.24
	5.52
	5.38
	4.26

	Time used in message passing
	~
	6.2
	6.08
	6.62


Although the time used in calculation decrease continually, the range is too close.   Ex. When 2 processors are used, the calculation’s time is 5.52s, it just only increased about 11%. In addition, the time used in transferring message is around 6s. So there is no speedup.
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