Jacobi method

Firstly, we use a small size matrix to describe the algorithm of parallel computer.

Example 2

Assume
[image: image1.wmf]÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

-

-

-

-

-

-

-

-

=

5

2

1

0

1

2

0

9

3

4

5

5

2

1

4

1

0

0

0

2

4

7

0

2

1

1

2

3

8

0

1

3

0

2

1

6

A

,
[image: image2.wmf]÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

=

19

16

16

0

25

54

b

In parallel programming, if we use three processors to solve these equations, we need to divide A and b into 3 parts. Each part contains 2 rows. We use the following graph to show how these three processors solving the system of equations in parallel.

Parent

Send A,
[image: image3.wmf]®

b

,
[image: image4.wmf]x

 to child

Calculate
[image: image5.wmf]2

1

,

x

x

Receive
[image: image6.wmf]6

5

4

3

,

,

,

x

x

x

x

 from child

Continue until convergence

 1st Child 2nd Child

 Receive
[image: image7.wmf]4

3

,

x

x

 from parent Receive
[image: image8.wmf]6

5

,

x

x

 from parent

Calculate
[image: image9.wmf]4

3

,

x

x

 Calculate
[image: image10.wmf]6

5

,

x

x

 Send back to parent Send back to parent

From the graph, we sent the lower parts to our child. So in 1st child, we have

[image: image11.wmf](

)

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

÷

÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

-

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

-

+

+

k

k

k

k

k

k

k

k

x

x

x

x

x

x

x

x

6

5

4

3

2

1

1

4

1

3

2

1

0

1

0

0

0

2

4

0

0

2

16

0

4

7

Similarly, we renew
[image: image12.wmf]6

5

2

1

,

,

,

x

x

x

x

 in parent and 2nd child respectively. After renewal, we gather all the new x_locals back to the parent, and then broadcast
[image: image13.wmf]x

 to child again to find the new solution. Finally, parent will collect all the x_locals from the child.

Result: From the Profile Report, the total time used in this function is only 0.03 seconds. The time recorded is similarly to the time if using one processor which used 0.02s. So for the small matrix, there is no big different between using parallel and series computing because the calculation time are too small in both cases.

Now we consider large sparse matrix
Example 3

Assume A be a 57600x57600 sparse matrix,

[image: image14.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

-

-

-

-

=

T

I

I

I

I

T

A

O

O

O

O

O

O

O

 ,
[image: image15.wmf]÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

-

-

-

-

=

01

.

4

1

1

1

1

01

.

4

O

O

O

O

O

O

O

T

Similarly to previous one, we divide A and b into several parts. So each processor can calculate several x_locals, it will decrease the time in calculation.

After we solve the systems of equations, we use the command “profile” to compare which program (series or parallel) is more efficient.

Result: (1) In network of work-stations, it seems that the time needed to solve by jacobi method in series and parallel processor is very closed. The following table shows the time in all cases:

	No. of processor used
	1
	2
	4
	8

	Time
	8.69
	8.06
	7.88
	7.17

From the profile report, the time recorded is gradually decreasing if more processors are used. We can specify to see the line that calculate the x, the time needed is evidently decreased.

	No. of processor used
	1
	2
	4
	8

	x=(b-Aoff*x0)/Adiag
	5.23
	2.65
	0.92
	0.76

On the other hand, the time used in message passing is almost the same.

	No of processor
	1
	2
	4
	8

	MPI_Bast
	~
	2.08
	3.53
	3.86

	MPI_Gather
	~
	1.79
	1.82
	1.31

The time used to broadcast x to the child increasing because the number of processor increase. Oppsitively, the time used in gather x back to the parent decrease. The number of processor increase means x_local becomes smaller in each child, so the time sent back to parent decrease.

From the above, we know that the time used in calculation will clearly show out the decreasing trend when more processors are used. So if the matrix’s size becomes larger or it needs more iteration to convergent, it will give out better speedup since the calculation work becomes heavier.

The following table shows the speed-up and the efficiency of each case,

[image: image16.wmf]p

S

=execution time for a single processor / execution time using p processors

[image: image17.wmf]p

S

E

p

p

=

.

	No of processors used, p
	1
	2
	4
	8

	　Speed up,
[image: image18.wmf]p

S

	1
	1.08
	1.10
	1.21

	　Efficiency,
[image: image19.wmf]p

E

	1
	0.54
	0.28
	0.15

[image: image20.png]

(2) In PC cluster, this method cannot apply parallel algorithm. The following table shows the time used in this function,

	No of processor
	1
	2
	4
	8

	Time used
	8.58
	17.35
	16.29
	13.02

We can see the Profile report to found out the reason. We notice that the calculation’s time is obviously decreasing but the time used in message passing is increasing.

	No of processor
	1
	2
	4
	8

	x=(b-Aoff*x0)/Adiag
	4.8
	2.36
	0.78
	0.53

	MPI_Bast
	~
	2.12
	7.57
	7.01

	MPI_Gather
	~
	5.60
	4.43
	3.44

Long communication time cause the degradation from speedup.

Example 4

We try to use the larger matrix to see whether the result will improve.

Let A be a 921600x921600 large sparse matrix, so it will use more time in calculation. In addition, I will use ‘Allgather’ instead of ‘Broadcast’ and ‘Gather’ to sent the new x to all slaves.

Result:

	No of processor
	1
	2
	4
	8

	Total time used
	142.5
	138.75
	194.57
	193.23

	x=(b-Aoff*x0)/Adiag
	79.22
	39.79
	20.47
	11.15

	MPI_Allgather
	~
	60.65
	141.24
	145.57

Although now we need more time to calculate x and the time needed is steadily decreasing if more processors are used, the total time of this algorithm is increased. It is because the time used in message passing is also increased. There is a big different between 2 and 4 processors are used. The time used in transferring data is 60.65 when 2 processors are used but it need more than double times when 4 processors are used.

So we need to find another method to reduce the communication’s time for large sparse matrix in parallel programming. And I will continue it later.

PAGE
13

_1098563619.unknown

_1108999545.unknown

_1108999956.unknown

_1110839733.unknown

_1113171966.unknown

_1110834024.unknown

_1110839712.unknown

_1108999797.unknown

_1098563808.unknown

_1108999322.unknown

_1098564850.unknown

_1098563738.unknown

_1098561765.unknown

_1098562982.unknown

_1098563580.unknown

_1098562782.unknown

_1098472933.unknown

_1098561516.unknown

_1098472528.unknown

